What's new with synchrony programs in pasture based dairy herds?

- Dr Jacques Barnard Farm Animal Manager Vetoquinol ANZ
- jacques.barnard@vetoquinol.com
- +64 21 289 6648

AART

Nowicki et al (2019) Polish Journal of Veterinary Sciences. 22. 157-161.

2

Back to the beginning... in 1995

VetoquinoL Improving fertility (P / AI)

AART

Luteolytic treatment with PGF2 α is only effective when a functional CL exists from **days 5 to 16** of a normal oestrous

Inadequate luteolysis ⇒ High P4 @ AI ⇒ poor fertility

AAR

Effect of a second treatment with PGF2α during the Ovsynch protocol on luteolysis and pregnancy in dairy cows

AAPAT

Figure 1. Schematic diagram of the experimental protocols used for experiments (EXPT.) 1 and 2. In EXPT. 1, cows began Double-Ovsynch at 54 \pm 3 DIM with timed AI at 81 \pm 3 DIM. In EXPT. 2, cows began Ovsynch at 50 \pm 3 DIM with timed AI at 60 \pm 3 DIM. PGF = prostaglandin F_{2α}.

Effect of a second treatment with PGF2α during the Ovsynch protocol on luteolysis and pregnancy in dairy cows

Table 6. Effect of treatment with a second prostaglandin $F_{2\alpha}$ (PGF) on P/AI during the Ovsynch (experiment 2) or Double-Ovsynch (experiment 1) protocols¹

Parity	1 PGF, % (no./no.)	2 PGF, % (no./no.)	Effect of PGF difference, % (<i>P</i> -value)
Primiparous Multiparous <i>P</i> -value	$\begin{array}{c} 39.3 \ (140/356) \\ 32.5 \ (296/910) \\ 0.04 \end{array}$	$\begin{array}{c} 40.6 & (139/342) \\ 36.5 & (333/913) \\ 0.17 \end{array}$	+ 3.31% (0.39) +12.31% (0.043)
Overall	$34.4 \ (436/1266)$	$37.6 \ (471/1251)$	+9.45% (0.049)
¹ Results from exper included in the anal	iments 1 and 2 were combin ysis.	ed for the analysis with a	ll cows assigned to the experiments

Conclusion:

- > 2^{nd} PGF2 $\alpha \Rightarrow$ reduced the percentage of cows with inadequate regression of the CL at the time of the final GnRH
- An increase in fertility with about 10% more pregnancies produced in cows treated with the second PGF
- Likely to be a **practical treatment** for many dairy farms

A <u>meta-analysis</u>: Effect of adding a 2nd PGF2α injection during the Ovsynch protocol on luteal regression and fertility in lactating dairy cows

AARA

Table 2. Effect of an additional treatment with $PGF_{2\alpha}$ during the Ovsynch protocol (n = 1,856) on luteal regression at the end of the protocol considering 6 manuscripts with a randomized controlled study design

	Luteal regression				
$Manuscript^1$	1PGF	2PGF	- Relative risk ²	95% CI	<i>P</i> -value
Barletta et al. (2018)	112/128	133/142	1.07	0.99 - 1.16	
Brusveen et al. (2009)	151/178	155/162	1.13	1.05 - 1.21	
Carvalho et al. (2015a)	262/312	281/288	1.16	1.10 - 1.22	
Heidari et al. (2017)	28/50	35/50	1.25	0.92 - 1.70	
Santos et al. (2016)	89/100	100/102	1.10	1.02 - 1.19	
Wiltbank et al. (2015)	146/176	163/168	1.17	1.09 - 1.26	
$I^2 = 0.00\% (P = 0.450)$,	,			
Total (fixed effects)	788/944	867/912	1.14	1.10 - 1.17	0.001
Total (random effects)	788'/944	867/912	1.13	1.10 - 1.17	0.001
Pooled proportion (%)	83.5	95.1			

 ${}^{1}I^{2}$ = proportion of total variation of effect size estimates that is due to heterogeneity.

²Relative risk for having a blood progesterone concentration below a certain threshold at the end of the Ovsynch protocol using a single $PGF_{2\alpha}$ treatment (1PGF) compared with 2 $PGF_{2\alpha}$ treatments (2PGF) during the Ovsynch protocol.

Effect of dose and frequency of PGF2α treatments during a 7-day Ovsynch protocol with an intravaginal progesterone releasing device on luteal regression and pregnancy outcomes in lactating Holstein cows

- 2nd PGF treatment ⇒ increased luteal regression and decreased mean P4 at G2
- At 35 ± 3 days P/AI: 46.5% vs 37.7% (P = 0.045)
- At 80 ± 7 days P/AI: 44.1% vs 35.6% (P = 0.055)

But what about in cows on pasture?

AART

AART

Five split-calving, pasture-based dairy herds in SW VIC (Spring 2015 / Autumn 2016)

Effect of a 2^{nd} PGF2 α during the Ovsynch program on FTAI conception rates and luteolysis in split calving, pasture-fed dairy cows

RESULTS:

- 1. MO FTAI conception rates <u>7%</u> (95% Cl 2%-12%) > 00
- 2. Odds of conception to FTAI was <u>1.36</u> (95% Cl 1.12-1.66) times greater for MO than OO*
- **3. Variability of serum progesterone** concentrations at the time of FTAI was <u>significantly less</u> for MO than OO

CONCLUSION:

For HF and HF-X cows managed in pasture based dairy herds in southern Australia, the use of a **modified Ovsynch protocol including a second injection of PGF on day 8, increased FTAI conception rates**

Increasing conception rate by addition of a 2nd PGF2 α injection in an Ovsynch and progesterone treatment programme for dairy cows <u>not</u> <u>detected in oestrus</u> before the start of the seasonal mating period

Anoestrous cows (n = 1,411) from **nine** spring-calving dairy herds in the Waikato region of NZ (2018/2019)

Increasing conception rate by addition of a 2nd PGF2 α injection in an Ovsynch and progesterone treatment programme for dairy cows <u>not</u> <u>detected in oestrus</u> before the start of the seasonal mating period

-in m

RESULTS:

	Original Ovsynch (PG D7)	Modified Ovsynch (PG D7&8)	р
Conception rate (1 st AI)	41.1 (95% CI = 41.0-41.3)%	45.3 (95% CI = 45.1-45.4)%	p < 0.001
3-week-in-calf rate	49.2 (95% CI = 49.0-49.4)%	53.4 (95% CI = 53.6-54.0)%	p < 0.001
6-week-in-calf rate	63.5 (95% CI = 62.0-65.0)%	67.2 (95% CI = 65.7-68.8)%	p = 0.014

CONCLUSIONS:

Addition of a second PG injection 24 hours after the first

- **1.** increased conception rate to first service
- 2. and the **proportion of cows pregnant by 3** and 6 weeks after commencement of the mating period

Effect of 2nd PGF2a on day 8 in 461 Autumn-calving cows on 2 Waikato farms (2022)

Treatment	PR	Lower 95%Cl	Upper 95%Cl	p-value
1 x PG d7	34.2%	28.3%	40.8%	
2 x PG d7 & d8	47.1%	40.2%	54.0%	
Difference	12.8%	3.2%	17.1%	0.006

Conclusions:

- ⇒ double PG injection performed **significantly better**
- ⇒ increasing pregnancy rates on average by **12.8%**

- Improving fertility requires:
 - Increasing submission rates (FTAI)
 - Increasing conception rates
- Including a second PGF2a 24hrs after the first improves conception rates

